تازه ترين نوشته ها
خانه / رشته هاي دانشگاهي / رشته مهندسی عمران / بتن

 موسسه علمي پ‍‍‍‍‍‍ژوهشي آبنوس
 پكيج طلايي كنكور

تبلیغات

مقالات و پروژه های رشته حسابداری
بیش از ۲۵۰ مقاله و تحقیق رشته حسابداری با فرمت ورد ( DOC )

بیش از ۱۵۰ پروژه مختلف رشته حسابداری با فرمت اکسل

بیش از ۵۰ مقاله ترجمه شده حسابداری به همراه متن انگلیسی

بیش از ۱۰۰ طرح توجیهی و کارآفرینی با ارزش

ده ها مقاله لاتین رشته حسابداری

مقالات و پروژه های رشته حسابداری
دانلود مقاله

بتن

عنوان مقاله: بتن

تاریخچه تراورس بتنی

تراورسهای بتنی، در حدود سال ۱۸۹۳ بطور آزمایش در ایالات متحده آمریکا در شهر ریدینگ به تعداد دویست عدد نصب گردید.

بزرگترین رقم نصب آن در طی ۳۵ سال، در حدود ۲۵ هزار تراورس بتنی بود که در ایالات پنسلوانیا نصب گردید.

اکثر این تراورسها به دلیل زنگ زدن اتصالات، ترک خوردگی بتن و همچنین فرسودگی ونشست در محدوده اتصالات، کنار گذاشته شدند. در اروپا، راه آهن ایتالیا بین سالهای ۱۹۰۶ تا ۱۹۰۸ دویست هزار تراورس بتنی نصب کرد. در سال ۱۹۲۰ شرکت گریت نوردن انگلیسی بطور آزمایش از تراورسهای بتنی استفاده کرد. در همان هنگام تراورسهای بلوکی بتنی که در زیر ریل به وسیله تسمه فلزی به هم وصل می شوند و یا بر روی تیر آهن  Tشکل ریخته می شوند، خدامات ارزنده بیشتری را درخطوط پاریس- لیون مارسل، ارائه کردند.

استفاده از تراورسهای تیری شکل اولیه، چه در آمریکا و چه خارج از آمریکا به دلایل شل شدن چفت و بست، خرد شدن در اثر ضربه و خرد شدن در زیر ریل، ناکام ماند. همچنین به دلیل سنگینی وزن (که حدود ۷/۹۰ تا ۴/۱۸۱ کیلو گرم بودند)، با هزینه های بالای حمل و نقل، نصب و نگهداری مواجه بود.

چندی بس از جنگ جهانی دوم چوب کمیاب شد و تراورس پیش تنیده بتنی، در اروپا و بریتانیا، مورد استفاده گسترده ای قرار گرفت اکنون چندین میلیون تراورس بتنی در آلمان غربی، بریتانیا، روسیه و مکزیک مورد استفاده قرار می گیرند، اما استفاده از طرح پیشرفته تراورس بلوکی و تراورس مرکب (RS) در راه آهن فرانسه و کشورهایی که از تکنولوژی فرانسوی استفاده می نمایند، استاندارد می باشد. (SNCF)

در اواخر دهه پنجاه AAR تحت نظارت و راهنمایی آقای روبل، مهندس تحقیقات و آقای مگی، دستیار تحقیق و به همراهی شرکتهای پیش تنیده فلوریدا و سیمان پرتلند اقدام به طراحی و توسعه تراورس مناسب برای بار سنگین چرخها و شرایط جوی آمریکا شمالی، نمود اولین نصب آزمایشی آن در سال ۱۹۶۰ در سی بردایرلاین و آنتلانتیک کت لاین (که اکنون به نام (سی برد کتلاین) معروف می باشد) انجام شد.

مقدمه:

مقدمه: برای محاسبه تراورسهای بتنی فرضیات اساسی زیر بعمل می آید.

  • در تراورس بتنی مقاطع قبل و بعد از خمش بصورت صفحه باقی می مانند این مطلب برای اثبات تئوری الاستیسیته در مورد تراورسها لازم می باشد. زیرا ضخامت تراورس در مقایسه با طول آن کوچک می باشد.
  • مدول الاستیسیته فولاد و بتن تا حد تنش الاستیک ثابت می باشد. این فرض برای فولاد نرمه (StL.III) تا نقطه ارتجاعی (تسلیم) درست می باشد. در تراورس تغییرات تنش در فولاد بعلت بارهای دینامیکی زیاد بوده و این امر باعث تغییراتی در مدول الاستیسیته می شود. تحت اثر تنشهای زیاد تغییرات مدول الاستیسیته در بتن نیز زیاد می باشد. چون بتن با مرغوبیت بالا ماده ای کاملا الاستیک نیست دیاگرام تنش- تغییر طول نسبی آن غیر خطی می باشد. در مورد تراورسها علیرغم دارا بودن بتن با مرغوبیت بالا، مع الوصف تنش ها در حد الاستیک درنظر گرفته می شوند.
  • چسبندگی کامل بین فولاد و بتن اطراف آن وجود دارد. و بهمین جهت در هر فاصله ای از محور خنثی (Neutral Axis) تغییر طول نسبتی دو ماده یکی می باشد.
  • بر روی سطح مقطع آرماتورها یا میله های بیش تنیدگی توزیع تنش یکنواخت در نظر گرفته می شود این مطلب کاملا هم صحیح نمی باشد چون مقدار تنش با فاصله از محور خنثی تغییر می کند قطر میلگردها در مقایسه با فاصله آنها ازمحورخنثی کم می باشد توزیع تنش یکنواخت بوده و فقط در موردیکه میله ها دارای قطر زیاد هستند و از محور خنثی نیز فاصله زیادی ندارند این مساله نمی تواند صحیح باشد.
  • در محاسبات بتن آرمه تنش کششی بتن در نظر گرفته نمی شود ولی در بتن پیش تنیده نقش بتن در کشش تحت بارهای وارده منظور می گردد. نتیجه اینکه منحنی تنش- تغییر طول نسبی برای بتن در برابر فشار و کشش یکسان می باشد. بعبارت دیگر مقدار مدول الاستیسیته در هر دو حالت یکی است. اگر چه آزمایشات نشان داده اند که مدول الاستیسیته در کشش معمولا ۱۰/۱- ۸۵/۰ برابر مدول الاستیسیته در فشار می باشد.
  • ۲- تراورس بتن آرمه:

مقدمه: در صورتیکه فولاد تحت تنش الاستیک باشد و قبل از اینکه به تنش مجاز خود برسد می بایست بتن ترک بخورد گر چه با توزیع مناسب  میلگردها می توان از افزایش ترکها

۲-۲- جلوگیری نمود تجزیه تنشها در اثر پیچش در بتن آرمه پیچیده بوده و لذا طراحی به فرمولها و دستور العملهائی که بر اساس آزمایشات عملی مشخص شده اند محدود می گردد.

معایب بتن آرمه:

۲-۲-۱ از آنجایئکه بتن قادر نیست خود را با تغییر طول نسبی (strain) عادی فولاد تطبیق دهد، تحت بارهای وارده در قسمتی که تنش کششی وجود دارد ترک می خورد.

۲-۲-۲- ابعاد تراورس بتن آرمه توسط برش تعیین می گردند. اگر نیروی برشی زیاد گردد سطح مقطع بزرگ می شود که در نتیجه بار مرده آن زیاد می گردد.

۲-۲-۳ بتن مکمل است در اثر انقباض (Shrinkage) ترک بخورد.

۲-۲-۴ در تراورس بتنی از بتن با مقاومت بالا استفاده کامل نمی شود یعنی اگر اندازه عضو از حد معینی کمتر گردد مقدار میلگردهای لازم، عضو را غیر اقتصادی خواهد ساخت. می توان با استفاده از فولاد سخت با مقاومت ارتجاعی بالاتر مقدار فولاد مصرفی را تا  کاهش داد. این راه حل صحیح نمی باشد، زیرا تغییر طول نسبی فولاد با مقاومت بالا حدود ۶ برابر تغییر طول نسبی فولاد نرم می باشد این امر باعث ترکهای پهنی تحت بارهای وارده در بتن می شود.

۲-۲-۵ در بتن آرمه فولاد نقش مفعولی (Passive) را دارد و بتن را در مقابل اثرات مخرب بار گذاری حفاظت نمی کند.

۲-۲-۶ تحت اثر نیروی برشی، در بتن آرمه تنشهای کششی که از نیروی برشی منتج می گردند بیشتر می باشند.

۲-۲-۷ وزن فولاد مصرفی در بتن آرمه زیاد می باشد.

۲-۲-۸ درمساله خستگی (Fatique) بتن و فولاد مصرفی در بتن آرمه در مقابل شکستهای تدریجی یا پیش رونده رفتار خوبی را از خود نشان نمی دهند که این مساله با تکرار بارگذاری نیز بیشتر می شود.

۲-۳- رفتار بتن آرمه تحت اثر خستگی (Fatique):

۲-۳-۱ اغضاء بتن آرمه بیشتر بعلت پاره شدن میلگردها از بین می روند بنظر می رسد که پاره شدن با ترک خوردن مرتبط می باشد و تمرکز تنش و سایش (سائیگی) نیز با این ترکها مربوط هستند. آرماتورهای طولی در تیرها مقاومتی حدود ۷۰-۶۰ درصد مقاومت نهائی استاتیکی برای یک میلیون سیکل را دارند.

۲-۳-۲ وقتیکه ترکهای عرضی در تیری در اثر بار استاتیکی نسبت به ظرفیت تحمل خمشی بیشینه استاتیکی زیاد باشند عموما تیر بعلت خستگی (Fatrique) آرماتورها گسیخته می شود. تکرار شدن بار بیشینه باعث ترکهای عرضی در مدت بار گذاری نمی شود.

۲-۳-۳ قبل از اینکه آرماتورها گسیخته شوند، تکرار بارهای بیشینه باعث شکست فشاری- بری نمی شود و این مساله در تیری است که بعلت خمشی ممکن است گسیخته شود (خستگی آرماتورها) و در آن- ترکهای عرضی افزایش یافته اند.

۲-۳-۴ اگر در ابتدا، در اثر ابر گذاری یک ترک عرضی بزرگ در تیر بوجود آید و اگر عمر خستگی در حالت فشاری- برشی از عمر خستگی آرماتور ها تحت این درصد بخصوص از تکرار بار کمتر باشد، یک تیر در حالت فشاری- برشی گسیخته می شود.

۲-۳-۵ قبل از اینکه آرماتورها گسیخته شوند، اگر تکررار بار گذاری بطور همزمان باعث تراز عرضی و شکست فشاری- برشی شود، گسیخته شدن تیر بصورت ترک خوردگی عرضی خواهد بود.

۲-۳-۶ تحت اثر بار گذاری خستگی، یک  تیر عموما “فقط در نقاطی که ترکها و شکستها وجود دارند خسارت می بیند و در قسمتهای باقیمانده دیگر صدمه نمی بیند.

۲-۳-۷ در حدود تغییرات بارهای عادی وارده، تکرار بار منجر به ترک می شود و فقط افزایش کمی در فلش (Deflection) کل تیر بوجود می آید افزایش در اندازه ترکها مهم نیست.

۲-۳-۸ بتن در تراورس بتن آرمه مقاومت فشاری و کششی کمتری نسبت به تراورس بتنی پیش تنیده دارد. مزایایی پیش تنیدگی در مورد تراورس بتن آرمه وجود ندارد بواسطه مدول الاستیک کمتر بتن.

۲-۳-۹ ترکی که در اثر ضربه خروج چرخ از خط در بتن تراورس بتن آرمه بوجود آمده احتمالا باقی می ماند، مگر اینکه ترک ریز باشد که توسط خاصیت جوش خوردگی در سالهای اولیه عمر تراوس خود بخود ترمیم یابد.

۲-۳-۱۰ امکان خسارت در اثر از خط خارج شدگی عامل مهمی در استفاده از تراورسهای بتنی است. هیچ تراورس بتنی به هر صورت که طراحی شده باشد، در مقابل ضربات خروج چرخ از خط نمی تواند مقاومت کند. تراورسهای بتنی به شرطی می توانند در برابر این ضربه مقابله کننده که بهبود سریعی در وضعیت ترافیک و استفاده از تراورسهای اصلاح شده و یا تعویض اعضاء صدمه دیده، صورت گیرد.


درباره‌ی M2

جوابی بنویسید

لطفا امتیاز دهید